QNu Labs

Quantum Random Number Generator and it’s relevance today

To ensure safety and trusted communication in today’s connected world, random number generators are a critical security element. The strength of the security system lies in the quality source from which the entropy is derived. The characteristics of a random number generator are:

  • They should constantly provide true randomness,
  • They should not be predictable.

The strength of the keys is determined by the highest degree of randomness used in its generation. This means, the higher the degree of entropy, the stronger is the key.

ARE TODAY’S RANDOM NUMBERS WEAK?​

Random numbers are used as seeds for cryptosystems to generate keys. Hence, the strength of the keys depend on the randomness of the input seed.

There are generally two types of random number generators: deterministic random number generator, also called Pseudo-Random Number Generator (PRNG) and non-deterministic random number generators, also known as True Random Number Generator (TRNG).

PRNG is a software-based algorithm which generates random numbers from deterministic source seed. The seed for the software could be a date, temperature, pressure or any deterministic input that are given to an algorithm randomising the input by using a mathematical formula.

True Random Number Generator (TRNG) uses hardware-based inputs to create random values. Here, the inputs are generally physical processes like avalanche noise, thermal noise or atmospheric noise. These noises are then converted into electronic signals and then into digital signals in order to generate random bits.

PRNG and TRNG are vulnerable due to their predictability

  • The outcome is predictable
  • They can be subsequently reproduced
  • In these RNG’s, the output is determined by the seed which is predictable
  • RNG consists of an algorithm when given the same input will always produce the same output-reused seeds
  • It becomes easy for hackers to guess and predict the keys

HOW QUANTUM RANDOM NUMBER GENERATOR (QRNG) WORKS ​

In cybersecurity, perfect random number is a root of trust. A QRNG  does not rely on mathematical algorithms but on laws of quantum physics to ‘naturally’ generate random numbers.

A QRNG can produce unpredictable outcomes in a robust and well-controlled way. It includes the power of complex deep-tech technologies such as semiconductors, optoelectronics, high precision electronics and quantum physics that work together to create the highest level of randomness possible.

QRNGs use random properties of quantum physics to generate a true source of entropy. This improves the quality of seed for key generation. Since the entropy sources are derived from fundamental models, all the properties and behaviours are understable and provably secure.

BENEFITS OF HAVING A QUANTUM RANDOM NUMBER GENERATOR:​

  • The source of randomness is unpredictable and controlled by quantum process.
  • The entropy source tends to produce true random output.
  • Live/ real-time monitoring of entropy source is possible and highly effective as well.
  • All attacks on the entropy source are detectable.
  • The above factors indicate that our QRNG is provably secure.

APPLICATIONS OF QUANTUM RANDOM NUMBER GENERATOR​

  • Securing data at rest in data centres
  • Securing any kind of sensitive data
  • Securing data in the cloud
  • One-time pad for authentication in banking and other transactions
  • Gaming applications and lottery
  • Block-chain network
  • Numerical simulations, statistical research
  • IoT devices
  • E-commerce and banking applications
  • Cryptographic applications
  • Telecom and 5G

QUANTUM-ENABLED SECURITY AS A ROOT OF TRUST​

In today’s Y2Q world, developers have to rely on the source of entropy as quantum-enabled security keys are set to become the new normal. Organisations should, therefore, implement QRNG to protect their customers’ data.

Related Posts

The History of Light ​

The concept of light has been described by many thinkers over the centuries starting from the Greeks in the 5th Century BC to more recent physicists such as Newton …

Read More »